УДК 624.012.45

РАСЧЕТ ФРАГМЕНТА МЕЖДУЭТАЖНОГО ЖЕЛЕЗОБЕТОННОГО ПЕРЕКРЫТИЯ НА ВЕРТИКАЛЬНЫЕ НАГРУЗКИ ПО МЕТОДУ СОСРЕДОТОЧЕННЫХ ДЕФОРМАЦИЙ

А.М. Зулпуев, Б.С. Ордобаев, М.Т. Насыров

Рассматриваются результаты исследований предельного состояния фрагмента междуэтажного перекрытия на вертикальные нагрузки по методу сосредоточенных деформаций.

Ключевые слова: предельное состояние; нагрузка; деформация; модель; напряжение; метод; сечение; плита.

CALCULATION OF FRAGMENTS OF REINFORCED CONCRETE FLOOR ON VERTICAL LOAD BY THE METHOD OF CONCENTRATED DEFORMATION

A.M. Zulpuev, B.S. Ordobaev, M.T. Nasyrov

The article deals with the studying results of limiting state of reinforced concrete floor fragments on vertical loadings by the method of concentrated deformation.

Key words: limit state; load; deformation; model; strain; method; section; plate.

Исследования предельного состояния фрагмента междуэтажного перекрытия при вертикальном воздействии нагрузки осуществляли дискретным методом, за основу была принята дискретная расчетная модель в форме метода сосредоточенных деформаций.

Рассмотрим вначале изгибаемую плиту постоянной толщины, изотропную в упругой стадии работы без реальных швов. Исходная изгибаемая железобетонная плита перекрытия сплошного сечения разбивалась плоскостями сосредоточенных деформаций на прямоугольные (квадратные) элементы размером $a_v * s_v$ (рисунок 1).

Рассматривая элементы МСД как жесткие на изгиб, кручение и сдвиг (срез) из своей и в своей плоскости, введем между ними условные (фиктивные) связи, способные сопротивляться изгибу, кручению, сдвигу и сжатию-растяжению. Характеристики жесткости этих связей должны быть назначены такими, чтобы исходная плита и ее модуль в МСД были эквивалентными, т. е. при действии нагрузки давали одинаковые прогибы, углы поворота, величины изгибающих и крутящих моментов, и поперечных (перерезывающих) сил в интересующих сечениях.

Задачу о напряженно-деформированном состоянии изгибаемой плиты будем решать на основе метода перемещений; каждый элемент МСД закрепляется фиктивными связями, исключающими его поворот вокруг оси X, поворот вокруг оси Z и перемещение в направлении оси Y. Аналогичные связи вводятся во всех других элементах МСД. Схема внутренних сил по плоскостям сосредоточенных деформаций и внешние силы сводятся к узловым, прикладываемым в местах фиктивных связей метода перемещений. Чаще всего эти внешние силы – поперечная нагрузка из плоскости плиты; однако

для железобетонной плиты

Этапы загруже- ния	Нагрузки на этапах в долях от разруше- ния, кгс/см ²	Прогиб, мм				Трещины, мм			
		экпериментальный		теоретический (МСД)		экпериментальный		теоретический (МСД)	
		Ригель (т. 86 и 87, 92 и 93)	Плита (т. 78 и 79)	Ригель	Плита	Ригель (92 и 93)	Плита (т. 78 и 79)	Ригель	Плита
От 0 до 5	664/0,33	1,25	0,65	1,201	0,624	0,02	-	0,018	-
6	738/0,36	2,00	1,47	1,948	1,411	0,05	0,02	0,047	0,019
7	837/0,41	2,75	2,10	2,651	2,016	0,08	0,05	0,076	0,049
8	1087/0,53	3,40	2,65	3,364	2,317	0,10	0,08	0,098	0,078
9	1188/0,58	4,10	4,55	4,032	4,277	0,12	0,10	0,106	0,095
10	1376/0,66	4,80	6,85	4,674	6,371	0,20	0,18	0,180	0,179
11	1619/0,79	6,80	11,90	6,804	10,710	0,28	0,25	0,275	0,248
12	1880/0,92	8,30	14,35	8,075	12,915	0,30	0,60	0,324	0,597
13	2035/1,0	13,75	19,16	13,120	17,244	0,35	1,10	0,367	1,096

Таблица 1 – Результаты испытания фрагмента перекрытия

нагрузки могут быть приложены в виде изгибающих моментов, что не меняет последовательности расчета и его трудоемкости.

Напряженно-деформированное состояние железобетонных плит раскрывается из системы алгебраических линейных уравнений метода перемещений в общей форме

$$[R] * \{V\} = \{P\}, \tag{1}$$

где [R] – матрица внешней жесткости для всей рассчитываемой системы; ее элементы $R_{i,j}$ – реакция в і-й связи метода перемещений от смещения j-й связи на единицу; $\{V\}$ – вектор искомых перемещений, его элементы – перемещения элементов МСД (по два угловых и одному линейному для каждого); $\{P\}$ – вектор нагрузок, его элементы – сосредоточенные силы и изгибающие моменты, действующие в узлах закрепления элементов МСД.

По перемещениям на основе общих зависимостей определяются внутренние силы

 $\{F\} = [D] * \{\lambda\},\tag{2}$

где $\{F\}$ – вектор внутренних сил, элементами которого являются внутренние силы по плоскостям сосредоточенных деформаций (изгибающий момент М, крутящий момент Н и поперечная сила Q с каждой из четырех сторон элемента МСД); [Э] – матрица внутренней жесткости системы, ее элементы – внутренние силы по плоскостям сосредоточенных деформаций от единичного взаимного смещения соседних элементов МСД; $\{\lambda\}$ – вектор сосредоточенных деформаций (взаимных смещений и поворотов элементов МСД).

Для всех сечений элементов МСД по плоскостям сосредоточенных деформаций принимается гипотеза плоских сечений.

Система алгебраических уравнений (1) решается относительно вектора перемещений $\{v\}$. Для этого должны быть известны матрица внешней жесткости [R] и вектор узловых нагрузок $\{P\}$.

Рисунок 3 – График зависимости "N – а_{стс}" (ригель): 1 – эксперимент; 2 – теория (МСД)

106

Рисунок 4 – График зависимости "N – a_{crc}" (плита): 1 – эксперимент; 2 – теория (МСД)

Имея расчетную модель, без особых затруднений можно составить вектор внешних сил $\{P\}$. Основная трудность заключается в формировании матрицы внешней жесткости системы [*R*]. Для ее построения можно применить способ единичных перемещений элементов МСД в направлении наложенных связей.

Однако, как показала практика, удобнее воспользоваться формулой

$$[R] = [A] * [K] * [A]^{T},$$
(3)

где [A] – матрица коэффициентов уравнений равновесия элементов МСД; $[A]^T$ – матрица, транспонированная с матрицей коэффициентов уравнений равновесия [A]; [K] – матрица внутренней жесткости сечений.

Согласно формуле (2) связь между внутренними усилиями по плоскостям сосредоточенных деформаций и соответствующими деформациями для типового к-го элемента МСД запишем в матричном виде

$$\{F\}_{\kappa} = [\mathcal{A}]_{\kappa} * \{\lambda\}_{\kappa}, \tag{4}$$

где $\{F\}_{\kappa}$ – вектор внутренних сил по граням к-го элемента по плоскостям сосредоточенных деформаций; $[\mathcal{P}]_{\kappa}$ – матрица жесткости сечений для к-го элемента по тем же граням; $\{\lambda\}_{\kappa}$ – вектор соответствующих деформаций.

Расчетная методика была реализована по программе "DIRAR" [1].

Результаты испытания фрагмента перекрытия на вертикальное воздействие [2] и результаты теоретических расчетов по МСД приведены в таблице 1.

Из данных таблицы 1 видно, что прогибы по методу сосредоточенных деформаций хорошо подтверждаются с экспериментальными данными. При анализе разница в результатах не превышает 4–13 % (рисунок 2).

Данные эксперимента показали, что прогиб в середине перекрытия в точках 78 и 79 увеличивался пропорционально величине поэтапного приращения нагрузки (таблица 1). Максимальное значение прогиба на тринадцатом этапе составило 19,16 мм.

В момент образования трещин на шестом этапе величина прогиба в плитах П-1 и П-2 равнялась 1,47 мм.

Если величина прогиба с 1 по 9 этап увеличивалась на каждом этапе на 5 % от максимального прогиба, то с 10 по 13 этап она составляла в среднем 20 %.

В середине пролета ригеля в точках 86 и 87 (92 и 93) максимальная величина прогиба в среднем составила на тринадцатом этапе 13,75 мм.

Прогиб на каждом этапе составлял с 1 по 10 этап 5 %, с 10 по 12 этап – 15 % и на последнем тринадцатом этапе – 66 %.

Разница прогиба между точками 86 и 87 (92 и 93) на тринадцатом этапе составила 0,55– 0,65 мм. Величина прогиба в середине пролета ригеля на начальных этапах была больше, чем прогиб в середине перекрытия в точках 78 и 79. Если на третьем этапе эта величина составляла 72 %, то к седьмому этапу она уменьшилась до 22 % и к началу восьмого этапа прогиб ригеля и перекрытия сравнялся.

На последующих этапах прогиб плит перекрытий в точках 78 и 79 увеличивался на 10 % на девятом этапе, и на 43 % – на двенадцатом этапе относительно прогиба середины пролета ригеля.

Образование и распространение трещин по низу фрагмента перекрытия, т.е. график зависимости "N – \mathbf{a}_{crc} " ригеля и график зависимости "N – \mathbf{a}_{crc} " плиты приведены на рисунках 3 и 4.

Таким образом, результаты расчета прогиба фрагмента перекрытия по методу сосредоточенных деформаций хорошо подтверждаются экспериментальными данными. Сопоставление результатов для этого метода находится в пределах 4–13 %.

Метод сосредоточенных деформаций позволяет не только определять напряженно-деформированное состояние плиты перекрытия на каждой ступени загружения, но и может проследить изменения перемещений, моментов, напряжений в арматуре и процесс образования и развития трещин.

Литература

- Зулпуев А.М. Программа "DIRAR" для расчета плит перекрытий на действие кратковременной нагрузки / А.М. Зулпуев // Вестник ОшГУ. 2005. № 2. Ош. С. 99–101.
- Темикеев К. Экспериментальные исследования пространственной работы плит перекрытий при действии вертикальной нагрузки / К. Темикеев, А.К. Стамалиев // Сб. трудов КАСИ. Бишкек. 1994. № 2. С. 38–43.